Drug repositioning holds great promise because it can reduce the time and cost of new drug development. While drug repositioning can omit various R&D processes, confirming pharmacological effects on biomolecules is essential for application to new diseases. Biomedical explainability in a drug repositioning model can support appropriate insights in subsequent in-depth studies. However, the validity of the XAI methodology is still under debate, and the effectiveness of XAI in drug repositioning prediction applications remains unclear. In this study, we propose GraphIX, an explainable drug repositioning framework using biological networks, and quantitatively evaluate its explainability. GraphIX first learns the network weights and node features using a graph neural network from known drug indication and knowledge graph that consists of three types of nodes (but not given node type information): disease, drug, and protein. Analysis of the post-learning features showed that node types that were not known to the model beforehand are distinguished through the learning process based on the graph structure. From the learned weights and features, GraphIX then predicts the disease-drug association and calculates the contribution values of the nodes located in the neighborhood of the predicted disease and drug. We hypothesized that the neighboring protein node to which the model gave a high contribution is important in understanding the actual pharmacological effects. Quantitative evaluation of the validity of protein nodes' contribution using a real-world database showed that the high contribution proteins shown by GraphIX are reasonable as a mechanism of drug action. GraphIX is a framework for evidence-based drug discovery that can present to users new disease-drug associations and identify the protein important for understanding its pharmacological effects from a large and complex knowledge base.
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
在任何给定的机器学习问题中,可能有许多模型可以很好地解释数据。但是,大多数学习算法仅返回这些模型中的一种,使从业者没有实用的方法来探索替代模型,这些模型可能具有超出损失函数中可以表达的内容的理想属性。 Rashomon集是所有这些几乎最佳模型的集合。 Rashomon集可能非常复杂,尤其是对于高度非线性功能类,允许复杂的交互项,例如决策树。我们提供了第一种完全列举稀疏决策树的Rashomon设置的技术;实际上,我们的工作提供了针对高度非线性离散功能类别的非平凡问题的所有Rashomon设置的首次列举。这使用户可以在所有近似同样好的模型中对模型选择的前所未有的控制水平。我们在专门的数据结构中表示Rashomon集,该数据结构支持有效的查询和采样。我们显示了Rashomon集的三个应用:1)它可用于研究一组几乎最佳树的重要性(与一棵树相对),2)Rashomon设置的精确度使Rashomon集可以枚举Rashomon集合。平衡的精度和F1得分,以及3)完整数据集的Rashomon集可以用于生产仅使用数据集的子集构建的Rashomon集。因此,我们能够检查新镜头问题的Rashomon集合,使用户能够选择模型,而不是受到仅产生单个模型的算法的摆布。
translated by 谷歌翻译
在本研究中,我们提出了一种基于病例的新型图像检索(SIR)方法,用于苏木精和曙红(H&E)染色的恶性淋巴瘤的组织病理学图像。当将整个幻灯片图像(WSI)用作输入查询时,希望能够通过重点关注病理上重要区域(例如肿瘤细胞)中的图像斑块来检索相似情况。为了解决这个问题,我们采用了基于注意力的多个实例学习,这使我们能够在计算案例之间的相似性时专注于肿瘤特异性区域。此外,我们采用对比度距离度量学习将免疫组织化学(IHC)染色模式纳入有用的监督信息,以定义异质性恶性淋巴瘤病例之间的适当相似性。在对249例恶性淋巴瘤患者的实验中,我们证实该方法比基线基于病例的SIR方法表现出更高的评估措施。此外,病理学家的主观评估表明,我们使用IHC染色模式的相似性度量适用于代表恶性淋巴瘤H&E染色组织图像的相似性。
translated by 谷歌翻译